

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY GURAJADA VIZIANAGARAM VIZIANAGARAM-535 003, A.P, INDIA

M. TECH - COMPUTER SCIENCE & ENGINEERING (Course Code-58) COURSE STRUCTURE AND SYLLABUS (R25)

(Applicable for batches admitted from Academic Year 2025-2026 onwards)

COURSE STRUCTURE

<u>I Year – I SEMESTER</u>

S.	Course	Course Title		Т	P	С
No.	Code	304130 1141	L	_	-	
1	M255801	Program Core-1	3	1	0	4
		Data Structures and Algorithm Analysis				
2	M255802	Program Core-2	3	1	0	4
		Machine Learning				
3	M255803	Program Core-3	3	1	0	4
		Mathematical foundations of computer science				
4		Program Elective –I	3	0	0	3
5		Program Elective –II	3	0	0	3
6	M255814	Laboratory-1	0	1	2	2
		Data Structures and Algorithm Analysis lab				
7	M255815	Laboratory-2	0	1	2	2
		Machine Learning Lab				
8	M255816	Seminar-I		0	2	1
		TOTAL	15	5	6	23

List of Professional Elective Courses in I Semester (Electives–I)

S. No.	Course Code	Course Title
1	M255804	Computer Vision and Image Processing
2	M255805	Soft computing
3	M255806	Advanced Computer Networks
4	M255807	Human Computer interaction
5	M255808	Any minimum12 weeks MOOCS/NPTEL courses suggested by BOS

@Students can opt any one course from the above list

List of Professional Elective Courses in I Semester (Electives–II)

Course Code	Course Title
M255809	Recommender Systems
M255810	High Performance Computing
M255811	Advance operating system
M255812	Advanced Compiler Design
M255813	Any minimum12 weeks MOOCS/NPTEL courses suggested by BOS
	M255809 M255810 M255811 M255812

@Students can opt any one course from the above list

<u>I Year – II SEMESTER</u>

Sl.	Course	Course Title		Т	P	C
No.	Code	304220 2240	L		_	
1	N255801	ProgramCore-4	3	1	0	4
		Advanced Data Mining				
2	N255802	ProgramCore-5	3	1	0	4
		Agile Software Development				
3	N255803	ProgramCore-6	3	1	0	4
		Introduction to Quantum computing				
4		Program Elective –III	3	0	0	3
5		Program Elective –IV	3	0	0	3
6	N255814	Laboratory-3	0	1	2	2
		Advanced Data Mining lab				
7	N255815	Laboratory-4	0	1	2	2
		Quantum computing lab				
8	N255816	Seminar-II	0	0	2	1
		TOTAL	15	5	6	23

<u>List of Professional Elective Courses in II Semester (Electives III)</u>

S. No.	Course Code	Course Title
1	N255804	Feature Engineering
2	N255805	Generative AI
3	N255806	Cyber Security
4	N255807	Natural Language processing
5	N255808	Any minimum12 weeks MOOCS/NPTEL courses suggested by BOS

[@]Students can opt any one course from the above list

List of Professional Elective Courses in II Semester (Electives IV)

S. No.	Course Code	Course Title
1	N255809	Block Chain Technologies
2	N255810	DevOps
3	N255811	Internet of Things
4	N255812	Design Patterns
5	N255813	Any minimum12 weeks MOOCS/NPTEL courses suggested by BOS

@Students can opt any one course from the above list

II Year – I SEMESTER

Sl. No.	Course Code	Course Title	L	T	P	С
1	O255801	Research Methodology and IPR / Swayam 12 week MOOC course – RM&IPR	3	0	0	3
2	O255802	Summer Internship/ Industrial Training (8-10 weeks)*	-	-	-	3
3	0255803	Comprehensive Viva [#]	-	-	-	2
4	0255804	Dissertation Part – A ^{\$}	-	-	20	10
		TOTAL	3	-	20	18

^{*} Student attended during summer / year break and assessment will be done in 3rd Sem.

II Year – II SEMESTER

Sl. No.	Course Code	Course Title	L	Т	P	С
1	P255801	Dissertation Part – B [%]	-	-	32	16
		TOTAL	-	-	32	16

[%] External Assessment

[#] Comprehensive viva can be conducted courses completed up to second sem.

^{\$} Dissertation – Part A, internal assessment

Course Code	Data Structures & Algorithms	L	T	P	C
Course Code	Analysis	3	1	0	4

- 1. Provide an understanding of algorithm design techniques
- 2. Enhance problem-solving skills by applying appropriate data structures and algorithms to computational problems

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Design effective algorithms based on Divide and Conquer and Greedy methods.	K5
CO2	Discuss various problems suitable to Dynamic programming.	K2
CO3	Demonstrate various searching, sorting and hash techniques and be able to apply and solve problems of real life	K4
CO4	Design and implement variety of data structures including linked lists, binary trees, heaps, graphs and search trees	K3
CO5	Ability to compare various search trees and find solutions for IT related problems	K6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н		M	Н		
CO2			Н	Н		
CO3			Н	H		M
CO4			Н	H		Н
CO5			Н	Н	M	M

UNIT	CONTENTS	Contact Hours
UNIT – 1	Divide and Conquer: General Method, Binary Search, Merge sort, Quick sort, Strassen's Matrix Multiplication. The Greedy Method: The general Method, knapsack problem, minimum-cost spanning Trees, Job sequencing within deadlines, Single Source Shortest Path Algorithm.	10Hrs
UNIT – 2	Dynamic Programming: The general method, All pairs-shortest paths, Optimal Binary search tree, 0/1 knapsack, Traveling salesperson problem.	10Hrs
UNIT – 3	Dictionaries, ADT, The List ADT, Stack ADT, Queue ADT, Hash Table Representation, Hash Functions, Collision Resolution-Separate Chaining, Open Addressing- Linear Probing, Double Hashing	12Hrs
UNIT – 4	Priority queues- Definition, ADT, Realising a Priority Queue Using Heaps, Definition, Insertion, Deletion, Search Trees- Binary Search Trees, Definition, ADT, Implementation, Operations- Searching, Insertion, Deletion	13Hrs
UNIT – 5	Search Trees- AVL Trees, Definition, Height of AVL Tree, Operations-Insertion, Deletion and Searching. Introduction to Red-Black and Splay Trees, B-Trees, Height of B-Tree, Insertion, Deletion and Searching, Comparison of Search Trees	13Hrs
	Total	58Hrs

- 1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, Richard F.Gilberg, Behrouz A. Forouzon, Cengage Learning, 2004
- 2. Data Structures, Algorithms and Applications in java, 2 nd Edition, Sartaj Sahni, University Press/Orient BlackSwan, 2005
- 3. Ellis Horowitz, Sartaj Sahni and SanguthevarRajasekaran, "Fundamentals of Computer Algorithms", Second Edition, Universities Press, India, 2021.

Reference Books:

- 1. Data Structures And Algorithm Analysis, 2 nd Edition, Mark Allen Weiss, Pearson, 2002
- 2. Data Structures And Algorithms in C++, 3 rd Edition, Adam Drozdek, Cengage Learning, 2005
- 3. C and Data Structures: A Snap Shot Oriented Treatise Using Live Engineering Examples, 1st Edition, N.B. Venkateswarulu, E.V. Prasad, S Chand & Edition, Co., 2009
- 4. Classic Data Structures, 2 nd Edition, Debasis Samantha, PHI Learning, 2009

Course Code	Machine Learning	L	T	P	C
Course Code	Wiachine Learning	3	1	0	4

Course Objectives:

The objectives of the course are to

- 1. Introduce the fundamental concepts, models, and techniques of machine learning.
- 2. Cultivate the skills to formulate real-world problems as machine learning tasks and design appropriate solutions.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Enumerate the Fundamentals of Machine Learning	K2
CO2	Build Nearest Neighbor based models	K2
CO3	Apply Models based on decision trees and Bayes rule	K4
CO4	Explain the fundamental concepts of linear discriminants and their role in classification tasks.	K2
CO5	Choose appropriate clustering technique	K2

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		Н	Н		
CO2	M		Н	Н	M	M
CO3	M		Н	Н	M	M
CO4	Н		Н	Н	M	Н

UNIT	CONTENTS	Contact Hours	
UNIT – 1	Introduction to Machine Learning: Evolution of Machine Learning,	10Hrs	
	Paradigms for ML, Learning by Rote, Learning by Induction, Reinforcement		
	Learning, Types of Data, Matching, Stages in Machine Learning, Data		
	Acquisition, Feature Engineering, Data Representation, Model Selection,		
	Model Learning, Model Evaluation, Model Prediction, Search and Learning,		
	Data Sets		
UNIT – 2	Nearest Neighbor-Based Models:Introduction to Proximity Measures,	12Hrs	
	Distance Measures, Non-Metric Similarity Functions, Proximity Between		
	Binary Patterns, Different Classification Algorithms Based on the Distance		
	Measures ,K-Nearest Neighbor Classifier, Radius Distance Nearest Neighbor		
	Algorithm, KNN Regression, Performance of Classifiers, Performance of		
	Regression Algorithms		
UNIT – 3	Models Based on Decision Trees: Decision Trees for Classification, Impurity	12Hrs	
	Measures, Properties, Regression Based on Decision Trees, Bias-Variance		
	Trade-off, Random Forests for Classification and Regression		
	The Bayes Classifier: Introduction to the Bayes Classifier, Bayes' Rule and		

	Inference, The Bayes Classifier and its Optimality, Multi-Class Classification			
	Class Conditional Independence and Naive Bayes Classifier (NBC)			
	i '			
UNIT – 4	Linear Discriminants for Machine Learning: Introduction to Linear	12Hrs		
	Discriminants, Linear Discriminants for Classification, Perceptron Classifier,			
	Perceptron Learning Algorithm, Support Vector Machines, Linearly Non-			
	Separable Case, Non-linear SVM, Kernel Trick, Logistic Regression, Linear			
	Regression, Multi-Layer Perceptron's (MLPs), Backpropagation for Training			
	an MLP			
UNIT – 5	Clustering: Introduction to Clustering, Partitioning of Data, Matrix	12Hrs		
	Factorization Clustering of Patterns, Divisive Clustering, Agglomerative			
	Clustering, Partitional Clustering, K-Means Clustering, Soft Partitioning, Soft			
	Clustering, Fuzzy C-Means Clustering, Rough Clustering, Rough K-Means			
	Clustering Algorithm, Expectation Maximization-Based Clustering, Spectral			
	Clustering			
	Total	58Hrs		

1. "Machine Learning Theory and Practice", M N Murthy, V S Ananthanarayana, Universities Press (India), 2024

Reference Books:

- 1. Machine Learning", Tom M. Mitchell, McGraw-Hill Publication, 2017
- 2. "Machine Learning in Action",Peter Harrington, DreamTech
- 3. "Introduction to Data Mining", Pang-Ning Tan, Michel Stenbach, Vipin Kumar, 7th Edition, 2019.

Corres Codo	Mathematical Foundations for	L	T	P	C
Course Code	Computer Science	3	1	0	4

- **1.** Equip students with the knowledge of mathematical reasoning and proof techniques for correctness of algorithms and program verification
- **2.** Cultivate analytical skills to apply mathematical tools and models in problem solving, algorithm analysis, and computational complexity.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Apply equivalence formulas, tautological implications in finding normal forms, and theory of Inference in Statement Calculus and predicates, and explain Mathematical Induction Principle and apply the same	К3
CO2	Apply skill in equivalences and inference theory in Predicate Calculus	K5
CO3	Explain the properties of relations, POSETS, LATTICES, functions and apply the same in solving the problems.	K2
CO4	Apply the principles of counting and probability to solve elementary and advanced probability problems.	K3
CO5	Identify the properties of graphs and related structures and solve the related problems	K2

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н		M	Н		M
CO2	M		M	Н		M
CO3	Н	M	Н	Н		M
CO4	Н		M	Н		M
CO5	Н	M	Н	Н		

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	Mathematical logic: Fundamentals (statements and notations, connectives,	10Hrs
	Truth tables), Tautologies, Equivalence of formulas, Tautological implications,	
	Normal forms, Theory of Inference.	
UNIT – 2	Predicate Calculus: Predicate logic, statement functions, variables and quantifiers, free and bound variables. Inference Theory of the Predicate Calculus: Logical implication involving quantifiers, Statements with more than one variable.	10Hrs
UNIT – 3	Relations: Relations, Properties of Relations, Equivalence relations, partial orders, Lattices, properties of Lattices, Special types of Lattices (Proofs not required).	12Hrs

UNIT – 4	Counting, Probability, Discrete random variable, Continuous random variable, Moment generating function, Markov's inequality, Chebyshev's inequality, The geometric and binomial distributions, The tail of the binomial distribution.	12Hrs
UNIT – 5	Graph Theory: Basic Concepts of Graphs, Matrix representation of graphs: Adjacency Matrices, Incidence Matrices, Isomorphic Graphs, Paths and Circuits, Eulerin& Hamiltonian graphs, Planar Graphs, Graph coloring	
	Total	56Hrs

- 1. Trembly J.P. and Manohar.P, "Discrete Mathematical Structures with applications to computer science," Tata McGraw Hill, New Delhi, 2017
- 2. Kolman B, Busoy R.C, Ross S.C, Discrete MathematicalStructures, 5thEdition,Prentice Hall, 2004.
- 3. D.S.Chandrasekharaiah, "Mathematical Foundation of Computer Science" Prism Publications 2009.
- 4. Probability and Statistics with Reliability, 2nd edition, K. Trivedi, Wiley, 2011

Reference Books:

- 1. J.L. Mott, A. Kandel, T.P Baker, "Discrete Mathematics for Computer Scientists and Mathematicians," Prentice Hall India, 2nd Edition 2015
- 2. Kenneth H. Rosen, "Discrete Mathematics and its Applications," Tata McGraw Hill, New Delhi, 7th edition, 2017
- 3. V. Krishnamurthy, "Combinatories:Theory and Applications", East-West Press. Seymour Lipschutz, M.Lipson, "Discrete Mathemataics" Tata Mc Graw Hill, 2005.

Course Code	Computer Vision and Image	L	T	P	C
	Processing	2	0	0	2
	(Program Elective-I)	3	3 0	U	3

- **1.** Introduce the fundamental concepts of digital image processing and the principles underlying computer vision.
- **2.** Cultivate problem-solving skills to apply computer vision and image processing techniques in real-world applications

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Describe and explain basic principles of digital image processing.	K3
CO2	Design and implement algorithms that perform basic image processing	К3
CO3	Design and implement algorithms for advanced image analysis	K4
CO4	Assess the performance of image processing algorithms and systems	K6
CO5	Design and develop computer vision solutions that integrate segmentation, morphology, feature extraction, and watermarking for real-world use cases	K5

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		H	Н		
CO2	Н		Н	Н	M	M
CO3	Н		Н	Н	M	Н
CO4	M	M	Н	M		Н
CO5	Н		Н	Н	M	Н

UNIT	CONTENTS	Contact Hours
UNIT – 1	Introduction: Fundamental steps in Image Processing System, Components of	10Hrs
	Image Processing System, Elements of Visual Perception, Image Sensing and	
	acquisition, Image sampling & Duantization, Basic Relationship between pixels. Image Enhancement Techniques: Spatial Domain Methods: Basic grey	
	level transformation, Histogram equalization, Image subtraction, image	
	averaging	

UNIT – 2	Spatial filtering: Smoothing, sharpening filters, Laplacian filters, Frequency	10Hrs
	domain filters, Smoothing and sharpening filters, Homomorphism is filtering.	
	Image Restoration & Reconstruction: Model of Image	
	Degradation/restoration process, Noise models, Spatial filtering, Inverse	
	filtering, Minimum mean square Error filtering, constrained least square	
	filtering, Geometric mean filter, Image reconstruction from projections. Color	
	Fundamentals, Color Models, Color Transformations.	
UNIT – 3	Image Compression: Redundancies- Coding, Interpixel, Psycho visual;	12Hrs
	Fidelity, Source and Channel Encoding, Elements of Information Theory; Loss	
	Less and Lossy Compression; Run length coding, Differential encoding, DCT,	
	Vector quantization, Entropy coding, LZW coding; Image Compression	
	Standards-JPEG, JPEG 2000, MPEG; Video compression.	
UNIT – 4	Wavelet Based Image Compression: Expansion of functions, Multi-resolution	12Hrs
	analysis, Scaling functions, MRA refinement equation, Wavelet series	
	expansion, Discrete Wavelet Transform (DWT), Continuous, Wavelet	
	Transform, Fast Wavelet Transform, 2-D wavelet Transform, JPEG-2000	
UNIT – 5	encoding Traces Segmentations Discontinuities Edge Linking and houndary detection	12Hrs
UNII – 5	Image Segmentation: Discontinuities, Edge Linking and boundary detection, Thresholding, Region Based Segmentation, Watersheds; Introduction to	12mrs
	morphological operations; binary morphology- erosion, dilation, opening and	
	closing operations, applications; basic gray-scale morphology operations;	
	Feature extraction; Classification; Object recognition. Digital Image	
	Watermarking: Introduction, need of Digital Image Watermarking, applications	
	of watermarking in copyright protection and Image quality analysis.	
	Total	56Hrs

1. Digital Image Processing. 2nd ed. Gonzalez, R.C. and Woods, R.E. India: Person Education, 2009

Reference Books:

- 1. Digital Image Processing. John Wiley, Pratt, W. K, Fourth Edition-2001
- **2.** Digital Image Processing, Jayaraman, S., Veerakumar, T. and Esakkiranjan, S., Tata McGraw-Hill, Edition-3,2009

Common Codo	Soft Computing	L	T	P	C
Course Code	(Program Elective-I)	3	0	0	3

- 1. Provide an understanding of the mathematical foundations and principles behind soft computing techniques.
- 2. Equip students with the skills to apply soft computing techniques

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)
CO1	Learn soft computing techniques and their applications.	K2
CO2	Analyze various neural network architectures.	К3
CO3	Define the fuzzy systems	K2
CO4	Understand the genetic algorithm concepts and their applications.	K2
CO5	Identify and select a suitable Soft Computing technology to solve the problem; construct a solution and implement a Soft Computing solution	K4

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		M	Н	M	
CO2	M		Н	Н		
CO3	L		M	M		
CO4	M		Н	Н	M	
CO5	Н	M	Н	Н	Н	Н

UNIT	CONTENTS	Contact Hours
UNIT – 1	Introduction to Soft Computing, Artificial neural networks, biological neurons, Basic models of artificial neural networks, Connections, Learning, Activation Functions, McCulloch and Pitts Neuron, Hebb network.	10Hrs
UNIT – 2	Perceptron networks, Learning rule, Training and testing algorithm, Adaptive Linear Neuron, Back propagation Network, Architecture, Training algorithm	10Hrs
UNIT – 3	Fuzzy logic, fuzzy sets, properties, operations on fuzzy sets, fuzzy relations, operations on fuzzy relations, Fuzzy membership functions, fuzzification, Methods of membership, value assignments, intuition, inference, rank ordering, Lambda –Cuts for fuzzy sets, Defuzzification methods	12Hrs
UNIT – 4	Truth values and Tables in Fuzzy Logic, Fuzzy propositions, Formation of fuzzy rules, Decomposition of rules, Aggregation of rules, Fuzzy Inference Systems, Mamdani and Sugeno types, Neuro-fuzzy hybrid systems, characteristics, classification	12Hrs
UNIT – 5	Introduction to genetic algorithm, operators in genetic algorithm, coding, selection, crossover, mutation, stopping condition for genetic algorithm flow, Genetic-neuro hybrid systems, Genetic Fuzzy rule based system	12Hrs
	Total	56Hrs

- 1. S. N. Sivanandam and S. N. Deepa, Principles of soft computing-John Wiley & Sons, 2007.
- 2. Timothy J. Ross, Fuzzy Logic with engineering applications, John Wiley & Sons, 2016.

Reference Books:

- 1. N.K. Sinhaand M.M. Gupta,Soft Computing & Intelligent Systems:Theory& Applications-Academic Press /Elsevier. 2009.
- 2. Simon Haykin, Neural Network-A Comprehensive Foundation-Prentice Hall International, Inc. 1998
- 3. R. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementation, Morgan Kaufman/Elsevier, 2007.
- 3. Driankov D., HellendoornH.andReinfrankM.,An Introduction to Fuzzy Control Narosa Pub., 2001.
- 4. BartKosko, Neural Network and Fuzzy Systems-Prentice Hall,Inc.,Englewood Cliffs, 1992
- 5. Goldberg D.E, Genetic Algorithms in Search , Optimization , and Machine Learning Addison Wesley, 1989

Corres Codo	Advanced Computer Networks	L	T	P	C
Course Code	(Program Elective-I)	3	0	0	3

Course Objectives: This course is aimed at enabling the students to

- 1. Explore advanced concepts in network design and analysis,
- 2. Familiarize students with wireless, mobile, and sensor networks, including their unique challenges and protocols.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Illustrate reference models with layers, protocols, and interfaces.	K4
CO2	Describe routing algorithms, subnetting, and addressing in IPv4 and IPv6.	K3
CO3	Analyze basic network protocols and their use in network design and implementation.	K3
CO4	Describe concepts related to wireless networks such as WLANs, WiMAX, IEEE 802.11, cellular and satellite systems.	K4
CO5	Describe emerging network trends such as MANETs and Wireless Sensor Networks (WSNs).	K2

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			Н	H		
CO2			Н	Н		
CO3	M		Н	Н		M
CO4			M	M		
CO5			M	M	M	M

UNIT	CONTENTS	Contact Hours
UNIT – 1	Network layer: Network Layer design issues: store-and forward packet	12Hrs
	switching, services provided transport layers, implementation connection less	
	services, implementation connection oriented services, comparison of virtual –	
	circuit and datagram subnets, Routing Algorithms-shortest path routing,	
	flooding, distance vector routing, link state routing, Hierarchical routing, congestion control algorithms: Approaches to congestion control, Traffic	
	aware routing, Admission control, Traffic throttling, choke Packets, Load	
	shedding, Random early detection, Quality of Service, Application	
	requirements, Traffic shaping, Leaky and Token buckets.	
UNIT – 2	Internetworking and IP protocols: How networks differ, How networks can	12Hrs
	be connected, internetworking, tunneling, The network layer in the internet,	
	IPV4 Protocol, IP addresses, Subnets, CIDR, classful and Special addressing,	
	network address translation (NAT),IPV6 Address structure address space,	
	IPV6 Advantages, packet format, extension Headers, Transition from IPV4 to	
	IPV6, Internet Control Protocols-IMCP, ARP, DHCP.	
UNIT – 3	Transport Layer Protocols: Introduction, Services, Port numbers, User	12Hrs
	Datagram Protocol: User datagram, UDP services, UDP Applications,	
	Transmission control Protocol: TCP services, TCP features, Segment, A TCP	
	connection, State transition diagram, Windows in TCP, Flow control and error	

	control TCD Congestion control TCD Timers SCTD, SCTD corriges SCTD	
	control, TCP Congestion control, TCP Timers, SCTP: SCTP services SCTP	
	features, packet format, An SCTP association, flow control, error control	
TINITE 4	TENT OF A DECLET A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	1011
UNIT – 4	Wireless LANS: Introduction, Architectural comparison, Access control, The	12Hrs
	IEEE 802.11 Project: Architecture, MAC sub layer, Addressing Mechanism,	
	Physical Layer, Bluetooth: Architecture, Bluetooth Layers Other Wireless	
	Networks: WIMAX: Services, IEEE project 802.16, Layers in project 802.16,	
	Cellular Telephony: Operations, First Generation (1G), Second Generation	
	(2G), Third Generation (3G), Fourth Generation (4G), Satellite Networks:	
	Operation, GEO Satellites, MEO satellites, LEO satellites	
UNIT – 5	Emerging trends in Computer networks: Mobile computing: Motivation for	12Hrs
	mobile computing, Protocol stack issues in mobile computing environment,	121115
	mobility issues in mobile computing, security issues in mobile networks,	
	MOBILE Ad Hoc Networks: Applications of Ad Hoc Networks, Challenges	
	<u> </u>	
	and Issues in MANETS, MAC Layer Issues Routing Protocols in MANET,	
	Transport Layer Issues, Ad hoc Network Security	
	Wireless Sensor Networks: WSN functioning, Operating system support in	
	sensor devices, WSN characteristics, sensor network operation, Sensor	
	Architecture: Cluster management, Wireless Mesh Networks: WMN design,	
	Issues in WMNs, Computational Grids, Grid Features, Issues in Grid	
	construction design, Grid design features, P2P Networks: Characteristics of P2P	
	Networks, Classification of P2P systems, Gnutella, BitTorrent, Session	
	Initiation Protocol(SIP), Characteristics and addressing, Components of SIP,	
	SIP establishment, SIP security.	
	Total	60Hrs
	1000	

- 1. Data communications and networking 4th edition Behrouz A Fourzan, TMH- 2007
- 2. Computer networks 4th edition Andrew S Tanenbaum, Pearson, 2012
- 3. Computer networks, Mayank Dave, CENGAGE, First edition. 2012

Reference Books:

1. Computer networks, A system Approach, 5thed, Larry L Peterson and Bruce S Davie, Elsevier-2012.

Course Code	Human Computer Interaction	L	T	P	C
Course code	(Professional Elective – I)	3	0	0	3

Course Objectives: This course is aimed at enabling the students to

- 1. To facilitate communication between students of psychology, design, and computer science on user interface development projects.
- 2. To provide the future user interface designer with concepts and strategies for making Designdecisions.

Course Outcomes: At the end of the course, student will be able to

	CourseOutcomes	Knowledge
		Level (K)
CO1	Apply rules for effective graphical and web design methodology.	K3
CO2	Evaluate many characteristics and considerations that must be applied to the interface and screen design process.	K4
CO3	Indentify the components of graphical and web interface and screens, including windows,	K3
CO4	Understand the using of menus and controls	K2
CO5	Organizegraphicalscreenstoencouragethefastestandmostaccuratecomprehensionand execution of screen components.	K3

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			Н	Н		
CO2			H	H		
CO3	M		Н	Н		M
CO4			M	M		
CO5			M	M	M	M

UNIT	CONTENTS	Contact
		Hours
UNIT-1	Introduction: Importance of user Interface – definition, importance	12 Hrs
	of good design. Benefits of good design. Characteristics of GUI,	
	Popularity of Graphics, Web user - Interface popularity,	
	characteristics- Principles of user interface.	
UNIT-2	Design Process: Human interaction with computers, importance of	12 Hrs
	human characteristics in design, Human considerations in design.	
	Understanding business functions-business definition and	
	requirement Analysis, Determining Basic Business functions.	

UNIT-3	Develop System Menus and Navigation schemes: Structure, Function, Content, Formatting of Menus, Phrasing the Menu, Selecting Menu Choices, Navigating Menus, Kinds of graphical Menus.	10 Hrs
UNIT-4	Select the Proper Kinds of Windows: Window Characteristics, Components of Windows, Window Presentation Styles, Types of Windows, Windows Management, Organizing Window Functions and Operations.	12 Hrs
UNIT-5	Write Clear Text and Messages. Web Systems, Select the Proper Device-Based Controls. Create Meaningful Graphics, Icons and Images.	12 Hrs
	Total	58 Hrs

- 1. WilbertOGalitz, "Theessentialguidetouser interfacedesign,"WileyDreamTech.
- $2.\ Ben Shneidermann, "Designing the user interface". 3rd Edition, Pears on Education Asia.$

ReferenceBooks:

- 1. Human–ComputerInteraction.ALANDIX,JANETFINCAY,GREGORYD,ABOWD, RUSSELL BEALG, PEARSON.
- 2. InteractionDesignPRECE,ROGERS,SHARPS.WileyDreamtech,
- $3.\ User Interface Design, Soren Lauesen, Pearson Education.$
- 4. The Essentials of Interaction Design, 3rd edition, Wiley 2007.

Course Code	Recommender Systems	L	T	P	C
Course Code	(Professional Elective – II)	3	0	0	3

CourseObjectives:This course is aimed at enabling the students to

- 1. Introduce the fundamental concepts and types of recommender systems, including content-based, collaborative, and hybrid approaches.
- 2. Provide knowledge of evaluation metrics and methodologies to assess the quality and effectiveness of recommender systems.

Course Outcomes: At the end of the course, student will be able to

	CourseOutcomes	Knowledge
		Level (K)
CO1	ComparedifferenttypesofRecommenderSystems.	K2
CO2	Understand various issues related to Recommender System development.	K2
CO3	Designarecommendersystemforagivenproblem.	K6
CO4	RelatedatacollectedfromaRecommenderSystemtoun- derstand user preferences and/or behaviour.	K2
CO5	Develop and manage recommender system knowledge bases to efficiently store and retrieve user and item information for personalized recommendations.	K4

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			Н	Н		
CO2			Н	Н		
CO3	M		Н	Н		M
CO4			M	M		
CO5	M		Н	Н		M

UNIT	CONTENTS	Contact Hours
UNIT-1	IntroductiontoRecommenderSystems	12Hrs.
	What is Recommendation engine?, Need for recommender systems,	
	Framework of	
	recommendationsystems, Domain, Purpose, Context, Personalization, ho	
	wwillyoutargetyourusers?,Personalized vs.Non-Personalized,	
	Semi/Segment - Personalized, Privacy, users data and trustworthiness.	
	Recommender Systems Function, Techniques, Recommender Systems	
	and Human Computer Inter- action, Conversational Systems,	
	Visualization, Issues working with RSs data sets:The cold-start	
	problem.	
UNIT-2	Collaborativefiltering-basedRecommenderSystem	12Hrs.
	Understanding ratings and rating data, User-based nearest-neighbor	
	recommendation:Similarity Function, User-Based Algorithms Item-	
	based nearest neighbor recommendation:Similarity Function, Item-Based	
	Algorithms, Furthermodel-based and preprocessing-based approaches,	
	Comparing User-Based and Item-Based recommen-	
	dations,datadriftandconceptdrift.	
UNIT-3	Content-basedRecommenderSystem	12Hrs.
	ArchitectureofContent-	
	basedSystems,AdvantagesandDrawbacksofContent-basedFiltering,Con-	
	tent representation and content similarity, Item profiles, discovering	
	features of data, obtaining item features from tags, representing item	
	profiles, Learning User Profiles and Filtering, Similarity-based retrieval,	
	Classification algorithms, Knowledge base recommendation: Knowledge	
	representation and reasoning, constraint-	
	basedrecommenders, Casebasedrecommenders.	
UNIT-4	Neighbourhood-basedRecommendationMethods	12Hrs.
	AdvantagesofNeighbourhoodApproaches,Neighbourhood-	
	basedRecommendation,User-basedRat- ing Prediction, User-based	
	Classification Regression Vs Classification, Item-based	
	Recommendation, User-based Vs Item based Recommendation,	
	Rating Normalization, Similarity Weight Computation,	
	Neighbourhood Selection	
UNIT-5	Constraint-based	10Hrs.
	RecommendersDevelopmentof RecommenderKnowledgeBases, UserGuidanceinRecommendation Processes, Calculating	

Recommendations.	
Context-Aware Recommender SystemsTrust Context in Recommen Systems, Modeling Contextual Information in Recommender System Paradigms for Incorporating Context in Recommender System Contextual Pre- Filtering, Contextual Post-Filtering, Context Modeling, Combining Multiple Approaches, Additional Issues Context-Aware Recommender Systems.	ms. ms: tual
	58 Hrs
Total	

- 1. C.C. Aggarwal, \Recommender Systems: The Textbook", Springer, 1st Edition, 2016.
- 2. Jannach D., Zanker M. and FelFering A., \Recommender Systems: An Introduction", Cambridge University Press, 1st Edition, 2011.
- 3. Kim Falk, \Practical Recommender Systems", Manning, 1st Edition, 2019
- 4. RounakBanik, \Hands-On Recommendation Systems with Python: Start building powerful and personalized, recommendation engines with Python", 2018.

Course Code	High Performance Computing	L	T	P	C
Course Code	(Program Elective-II)	3	0	0	3

Course Objectives: This course is aimed at enabling the students to

- 1. Develop an understanding of parallel programming models, such as shared-memory, distributed-memory, and hybrid models.
- **2.** Provide knowledge of HPC tools, libraries, and frameworks, such as MPI, OpenMP, CUDA, and GPU computing.

Course Outcomes: At the end of the course, student will be able to

	decomes. It the end of the course, student will be use to	77 1 1
		Knowledge
		Level (K)
CO ₁	Describe different parallel architectures, inter-connect networks, programming	K3
	models	
CO2	Develop an efficient parallel algorithm to solve given problem	K4
CO3	Analyze and measure performance of modern parallel computing systems	K5
CO4	Build the logic to parallelize the programming task	K2
CO5	Evaluate the performance of parallel algorithms and CUDA implementations in terms of speedup, efficiency, and scalability.	K4

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		Н	Н		
CO2	Н		Н	Н	M	Н
CO3	Н		Н	Н	M	Н
CO4	Н		Н	Н	M	Н
CO5	Н		Н	Н	M	Н

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	Introduction: Motivating Parallelism, Scope of Parallel Computing, Parallel	10Hrs
	Programming Platforms: Implicit Parallelism, Trends in Microprocessor and	
	Architectures, Limitations of Memory, System Performance, Dichotomy of	
	Parallel Computing Platforms, Physical Organization of Parallel Platforms,	
	Communication Costs in Parallel Machines, Scalable design principles,	

	Architectures: N-wide superscalar architectures, Multi- core architecture.	
UNIT – 2	Parallel Programming: Principles of Parallel Algorithm Design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel Algorithm Models, The Age of Parallel Processing, the Rise of GPU Computing, A Brief History of GPUs, Early GPU.	12Hrs
UNIT – 3	Basic Communication: Operations- One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather, All-to-All Personalized Communication, Circular Shift, Improving the Speed of Some Communication Operations. Programming shared address space platforms: threads- basics, synchronization, OpenMP programming	12Hrs
UNIT – 4	Analytical Models: Sources of overhead in Parallel Programs, Performance Metrics for Parallel Systems, and The effect of Granularity on Performance, Scalability of Parallel Systems, Minimum execution time and minimum cost, optimal execution time. Dense Matrix Algorithms: Matrix Vector Multiplication, Matrix-Matrix Multiplication.	12Hrs
UNIT – 5	Parallel Algorithms- Sorting and Graph: Issues in Sorting on Parallel Computers, Bubble Sort and its Variants, Parallelizing Quick sort, All-Pairs Shortest Paths, Algorithm for sparse graph, Parallel Depth-First Search, Parallel Best First Search. CUDA Architecture: CUDA Architecture, Using the CUDA Architecture, Applications of CUDA Introduction to CUDA C-Write and launch CUDA C kernels, Manage GPU memory, Manage communication and synchronization, Parallel programming in CUDA- C.	
	Total	58Hrs

- 1. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, "Introduction to Parallel Computing", 2nd edition, Addison-Wesley, 2003, ISBN: 0-201-64865-2
- 2. Jason sanders, Edward Kandrot, "CUDA by Example", Addison-Wesley, ISBN-13: 978-0-13-138768-3

Reference Books

- 1. Kai Hwang, "Scalable Parallel Computing", McGraw Hill 1998, ISBN:0070317984
- Shane Cook, "CUDA Programming: A Developer's Guide to Parallel Computing with GPUs", Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 2013 ISBN: 9780124159884
- 3. David Culler Jaswinder Pal Singh, "Parallel Computer Architecture: A Hardware/ Software Approach", Morgan Kaufmann, 1999, ISBN 978-1-55860-343-1
- 4. Rod Stephens, "Essential Algorithms", Wiley, ISBN: ISBN: 978-1-118-61210-1

Course Code	Advanced Operating System	L	T	P	C
Course Code	(Professional Elective – II)	3	1	0	4

- **1.** Familiarize students with modern operating system architectures and advanced concepts relevant to distributed and multi-core systems.
- **2.** To provide an in-depth understanding of process management including process states, scheduling, and inter-process communication.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Analyze and demonstrate process management concepts	K5
CO2	Understand and implement interprocess communication (IPC) mechanisms	K2
CO3	Apply file system optimization methods	K4
CO4	Analyze the concepts and implementation of device drivers	К3
CO5	Analyze resource management issues and classify different types of resources,	K6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н		M	Н		
CO2			Н	Н		
CO3			Н	Н		M
CO4			Н	Н		Н
CO5			Н	Н	M	M

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	PROCESSES AND SCHEDULING	10Hrs
	Process States and System Call Interface; Life Cycle of a Process: Process Dynamics; Scheduler:working and implementation; Linux Process States and System Calls; Process Groups, Sessions, Foreground and Background Processes.	
UNIT – 2	INTERPROCESS COMMUNICATION AND SYNCHRONISATION Signals, Pipes and Named Pipes (FIFOs); Threads and pthread library; Mutexes and Condition Variables; Semaphores; Producer-Consumer Problem and Solutions using mutexes, condition variables and semaphores	10Hrs

UNIT – 3	FILES AND FILE SYSTEMS	12Hrs
	File and File Meta-data; File Naming Systems; File System Operations; File	
	System Implementation; File System Structures; Booting an OS; File System	
	Optimisation.	
UNIT – 4	DEVICES AND DEVICE DRIVERS	13Hrs
	Devices and Types of Devices; Terminal, Disk, SCSI, Tape and CD devices;	
	Unification of Files and Devices; Device Drivers: Concepts and	
	Implementation Details.	
UNIT – 5	RESOURCE MANAGEMENT AND SECURITY	13Hrs
	Resource Management Issues; Types of Resources; Integrated Resource	
	Scheduling; Queuing Models of Scheduling; Protection of Resources –	
	hardware, software, and attacks; Security Policies	
	Total	58Hrs

Charles Crowley. Operating Systems: A Design-Oriented Approach, Tata McGraw-Hill (2001 or later)

Richard Stevens, Stephen Rago. Advanced Programming in the Unix Environment, Addison-Wesley (2013). Available for free download in PDF.

Reference Books:

Maekawa, M. and Arthur E. Oldehoeft and Oldehoeft, R.R. Operating Systems: Advanced Concepts, Benjamin Cummings (1987). Available through Google Books.

David A. Rusling. The Linux Kernel, http://www.tldp.org/LDP/tlk/tlk.html

Course Code	Advanced Compiler Design	L	T	P	C
Course Code	(Program Elective-II)	3	0	0	3

Course Objectives: This course is aimed at enabling the students to

- **1.** Introduce the principles and architecture of modern compilers, including lexical analysis, syntax analysis, semantic analysis, and code generation.
- **2.** Explore intermediate representations, symbol tables, and abstract syntax trees for program analysis and transformation.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Demonstrate various phases involved in the design of compiler	K4
CO2	Organize and apply Syntax Analysis Techniques such as Top Down Parsing and LL(1) grammars	К3
CO3	Design Bottom Up Parsing and Construct LR parsers	K4
CO4	Analyse synthesized, inherited attributes and syntax directed translation schemes	K5
CO5	Determine appropriate algorithms for a target code generation	K6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		Н	Н		M
CO2			Н	Н		
CO3	M		H	Н		M
CO4	Н		Н	Н		M
CO5	Н		Н	Н	M	Н

UNIT	CONTENTS	Contact Hours
UNIT – 1	Lexical Analysis: Language Processors, Structure of a Compiler, Lexical	10Hrs
	Analysis, The Role of the Lexical Analyzer, Bootstrapping, Input Buffering,	
	Specification of Tokens, Recognition of Tokens, Lexical Analyzer Generator-	
	LEX, Finite Automata, Regular Expressions and Finite Automata, Design of a	
	Lexical Analyzer Generator.	

UNIT – 2	Syntax Analysis: The Role of the Parser, Context-Free Grammars,	12Hrs				
	Derivations, Parse Trees, Ambiguity, Left Recursion, Left Factoring, Top					
	Down Parsing: Pre Processing Steps of Top Down Parsing, Backtracking,					
	Recursive Descent Parsing, LL (1) Grammars, Non-recursive Predictive					
	Parsing, Error Recovery in Predictive Parsing					
UNIT – 3	Bottom Up Parsing: Introduction, Difference between LR and LL Parsers,	12Hrs				
	Types of LR Parsers, Shift Reduce Parsing, SLR Parsers, Construction of SLR					
	Parsing Tables, More Powerful LR Parses, Construction of CLR (1) and LALR					
	Parsing Tables, Dangling Else Ambiguity, Error Recovery in LR Parsing,					
	Handling Ambiguity Grammar with LR Parsers					
UNIT – 4	Syntax Directed Translation: Syntax-Directed Definitions, Evaluation Orders	12Hrs				
	for SDD's, Applications of Syntax Directed Translation, Syntax-Directed					
	Translation Schemes, Implementing L-Attributed SDD's. Intermediate Code					
	Generation: Variants of Syntax Trees, Three Address Code, Types and					
	Declarations, Translation of Expressions, Type Checking, Control Flow,					
	Backpatching, Intermediate Code for Procedures.					
UNIT – 5	Run Time Environments: Storage Organization, Run Time Storage	12Hrs				
	Allocation, Activation Records, Procedure Calls, Displays, Code Optimization:					
	The Principle Sources of Optimization, Basic Blocks, Optimization of Basic					
	Blocks, Structure Preserving Transformations, Flow Graphs, Loop					
	Optimization, Data-Flow Analysis, Peephole Optimization, Code Generation:					
	Issues in the Design of a Code Generator, Object Code Forms, Code					
	Generation Algorithm, Register Allocation and Assignment.					
	Total	58Hrs				

1. Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, Pearson Publishers, 2007

Reference Books:

- 1. Compiler Construction, Principles and Practice, Kenneth C Louden, Cengage Learning, 2006
- 2. Modern compiler implementation in C, Andrew W Appel, Revised edition, Cambridge University Press.
- 3. Optimizing Compilers for Modern Architectures, Randy Allen, Ken Kennedy, Morgan Kauffmann, 2001.
- 4. Levine, J.R., T. Mason and D. Brown, Lex and Yacc, edition, O'Reilly & Associates, 1990

	Data Structures and Algorithm	L	T	P	С
Course Code	Analysis Lab	0	1	2	2

Course Objectives: This course is aimed at enabling the students to

- **1.** Enhance understanding of algorithm analysis, including time and space complexity using asymptotic notations.
- **2.** Equip students with the skills to apply appropriate data structures and algorithms to solve real-world computational problems.

Course Outcomes: At the end of the course, student will be able to

CO1	Ability to write and analyze algorithms for algorithm correctness and efficiency	Knowledge Level (K) K2
CO2	Master a variety of advanced abstract data type (ADT) and data structures and their Implementation.	K4
CO3	Demonstrate various searching, sorting and hash techniques and be able to apply and solve problems of real life	K4
CO4	Design and implement variety of data structures including linked lists, binary trees, heaps, graphs and search trees	K3
CO5	Ability to compare various search trees and find solutions for IT related problems	K6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н		M	Н		
CO2			Н	Н		
CO3			Н	Н		M
CO4			Н	Н		Н
CO5			Н	Н	M	M

UNIT	CONTENTS	Contact Hours
Experiment- 1	Write a java program to perform various operations on single linked list	3Hrs
Experiment- 2	Write a java program for the following	3Hrs
	a) Reverse a linked list	
	b) Sort the data in a linked list	

	c) Remove duplicates	
	d) Merge two linked lists	
Experiment- 3	Write a java program to perform various operations on doubly linked list	3Hrs
Experiment- 4	Write a java program to perform various operations on circular linked list	3Hrs
Experiment- 5	Write a java program for performing various operations on stack using linked list	3Hrs
Experiment- 6	Write a java program for performing various operations on queue using linked list	3Hrs
Experiment- 7	Write a java program for the following using stack	3Hrs
	a) Infix to postfix conversion.	
	b) Expression evaluation.	
	c) Obtain the binary number for a given decimal number.	
Experiment- 8	Write a java program to implement various operations on Binary Search Tree Using Recursive and Non-Recursive methods.	3Hrs
Experiment- 9	Write a java program to implement the following for a graph.	3Hrs
	a) BFS b) DFS	
Experiment– 10	Write a java program to implement Merge & Heap Sort of given elements	3Hrs
Experiment- 11	Write a java program to implement Quick Sort of given elements	3Hrs
Experiment– 12	Write a java program to implement various operations on AVL trees	3Hrs
Experiment- 13	Write a java program to perform the following operations:	3Hrs
	a) Insertion into a B-tree b) Searching in a B-tree	
Experiment– 14	Write a java program to implementation of recursive and non-recursive functions to Binary tree Traversals	3Hrs
Experiment– 15	Write a java program to implement all the functions of Dictionary (ADT) using Hashing	3Hrs
	Total	45Hrs

Course Code	Machine Learning Lab	L	T	P	C
Course Code		0	1	2	2

COURSE OBJECTIVES: The main objective of the course is to

- 1. Provide hands-on experience in implementing fundamental machine learning algorithms
- 2. Enable students to apply machine learning algorithms to practical problems in domains

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)
CO1	Implement and experiment with fundamental supervised and unsupervised machine learning algorithms.	K2
CO2	Apply machine learning algorithms such as linear regression, logistic regression,	K4
	decision trees, k-nearest neighbors, clustering, and support vector machines to	
	solve real-world problems.	
CO3	Evaluate and compare model performance using metrics like accuracy,	K4
	precision, recall, F1-score, and cross-validation.	
CO4	Use modern ML tools and frameworks	K3
CO5	Design and implement end-to-end machine learning solutions for practical	K6
	applications, including image processing, NLP, and recommendation systems.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н		M	Н		
CO2			Н	Н		
CO3			Н	Н		M
CO4			Н	Н		Н
CO5			Н	Н	M	M

UNIT	CONTENTS	Contact Hours
Experiment- 1	Compute Central Tendency Measures: Mean, Median, Mode Measure of Dispersion: Variance, Standard Deviation.	3Hrs
Experiment- 2	Apply the following Pre-processing techniques for a given dataset. a. Attribute selection b. Handling Missing Values c. Discretization d. Elimination of Outliers	3Hrs

Experiment- 3	Apply KNN algorithm for classification and regression	3Hrs
Experiment- 4	Demonstrate decision tree algorithm for a classification problem and perform parameter tuning for better results	3Hrs
Experiment- 5	Demonstrate decision tree algorithm for a regression problem	3Hrs
Experiment- 6	Apply Random Forest algorithm for classification and regression	3Hrs
Experiment- 7	Demonstrate Naïve Bayes Classification algorithm	3Hrs
Experiment-8	Apply Support Vector algorithm for classification	3Hrs
Experiment– 9	Demonstrate simple linear regression algorithm for a regression problem	3Hrs
Experiment– 10	Apply Logistic regression algorithm for a classification problem	3Hrs
Experiment- 11	Demonstrate Multi-layer Perceptron algorithm for a classification problem	3Hrs
Experiment– 12	Implement the K-means algorithm and apply it to the data you selected. Evaluate performance by measuring the sum of the Euclidean distance of each example from its class center. Test the performance of the algorithm as a function of the parameters K.	3Hrs
Experiment– 13	Demonstrate the use of Fuzzy C-Means Clustering	3Hrs
Experiment– 14	Demonstrate the use of Expectation Maximization based clustering algorithm	3Hrs
_	Total	42Hrs

Course Code	Advanced Data Mining	L	T	P	C
Course Code	Advanced Data Winning	3	1	0	4

- 1. Provide an in-depth understanding of advanced concepts, models, and algorithms in data mining and knowledge discovery.
- 2. Enable students to apply data mining frameworks and tools to solve real-world problems

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Describe the architecture, modeling techniques, and implementation strategies of data warehouses and OLAP systems, including modern cloud-based approaches	K2
CO2	Apply statistical and visualization techniques to describe datasets and perform data preprocessing tasks such as cleaning, integration, reduction, and transformation.	K3
CO3	Develop and evaluate classification models using decision trees, Bayesian classifiers, and rule-based methods for solving predictive analytics problems.	K4
CO4	Discovermeaningful associations and sequential patterns in data using algorithms like Apriori, FP-Growth, and sequential pattern mining techniques.	K3
CO5	Implement clustering techniques such as K-means, hierarchical clustering, and DBSCAN, and analyze advanced data mining for text, spatial, and graph data.	K4

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			Н	M	Н	
CO2			Н	Н	M	
CO3	M		Н	Н	M	
CO4	M		Н	Н	M	
CO5	M		Н	Н	Н	

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	Data Warehousing and Online Analytical Processing: Basic concepts, Data	10Hrs
	Warehouse Modeling: Data Cube and OLAP, Data Warehouse Design and	
	Usage, Data Warehouse Implementation, Cloud Data Warehouse; Data Mining	
	Methodologies: CRISP-DM and SEMMA, Comparison of Data Mining	
	Methodologies. Statistical Limits on Data Mining, Introduction to Predictive	
	Analytics, Technologies, Applications, Major issues (Text Book- 1)	
UNIT – 2	Data Objects & Attribute Types, Basic Statistical Descriptions of Data, Data Visualization, Measuring Data Similarity and Dissimilarity. Data Preprocessing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization. (Text Book-1)	10Hrs
UNIT – 3	Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Attribute Selection Measures, Tree Pruning, Scalability and Decision Tree Induction, Visual Mining for Decision Tree Induction, Bayesian Classification Methods: Bayes Theorem, Naïve Bayes Classification, Rule-Based Classification, Model Evaluation and Selection. (Text Book- 2)	12Hrs
UNIT – 4	Association Analysis: Problem Definition, Frequent Itemset Generation, Rule Generation: Confident Based Pruning, Rule Generation in Apriori Algorithm, Compact Representation of frequent item sets, FP-Growth Algorithm, Sequential Patterns: Preliminaries, Sequential Pattern Discovery (Text Book-2)	12Hrs
UNIT – 5	Cluster Analysis: Clustering techniques, Different Types of Clusters; K-means: The Basic K-means Algorithm, K-means Additional Issues, Bi-secting K Means, <i>Agglomerative Hierarchical Clustering</i> : Basic Agglomerative Hierarchical Clustering Algorithm DBSCAN: Traditional Density Center-Based Approach, DBSCAN Algorithm, Strengths and Weaknesses. <i>Mining rich data types</i> : Mining text data, Spatial-temporal data, Graph and networks. (Text Book- 2)	12Hrs
	Total	56Hrs

- 1. Data Mining concepts and Techniques, 3rd edition, Jiawei Han, Michel Kamber, Elsevier, 2011.
- 2. Introduction to Data Mining: Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Pearson, 2012.

Reference Books:

- 3. Data Mining: VikramPudi and P. Radha Krishna, Oxford Publisher.
- 4. Data Mining Techniques, Arun K Pujari, 3rd edition, Universities Press, 2013.

Online Resources:(NPTEL course by Prof.PabitraMitra)

- **1.** http://onlinecourses.nptel.ac.in/noc17_mg24/preview
- 2. http://www.saedsayad.com/data_mining_map.htm

Course Code	A gilo Coftyyaya Davalanmant	L	T	P	C
Course Code	Agile Software Development	3	1	0	4

- 1. To provide students with an understanding of the Agile Manifesto, principles, and their importance in modern software engineering.
- 2. To cultivate the ability to design, plan, and deliver software through iterative development cycles and incremental releases.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Interpret the concept of agile software engineering and its advantages in software development	K5
CO2	Analyze the core practices behind several specific agile methodologies	K2
CO3	Identify the roles and responsibilities in agile projects and their difference from projects following traditional methodologies.	K4
CO4	Access implications of functional testing, unit testing, and continuous integration.	K3
CO5	Determine the role of design principles in agile software design.	K6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	Н		M	Н		
CO2			Н	Н		
CO3			Н	Н		M
CO4			Н	Н		Н
CO5			Н	Н	M	M

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	Introduction: Need of Agile software development, agile context- Manifesto,	10Hrs
	Principles, Methods, Values, Roles, Artifacts, Stakeholders, and challenges.	
	Business benefits ofsoftware agility.	
UNIT – 2	Project Planning: Recognizing the structure of an agile team- Programmers,	10Hrs
	Managers, Customers. Userstories— Definition, Characteristics and content.	
	Estimation- Planning poker, Prioritizing, and selectinguserstories with the	
	customer, projecting team velocity for releases and iterations.	

UNIT – 3	Project Design: Fundamentals, Design principles-Single responsibility,	12Hrs
	Open-closed, Liskov substitution, Dependency-inversion, Interface-	
	segregation.	
UNIT – 4	Design Methodologies: Need of scrum, Scrum practices –Working of scrum,	13Hrs
	Project velocity, Burn downchart, Sprint backlog, Sprint planning and	
	retrospective, Daily scrum, Scrum roles- Product Owner, ScrumMaster,	
	Scrum Team. Extreme Programming- Core principles, values and practices.	
	Kanban, Feature-drivendevelopment, Lean software development.	
UNIT – 5	Testing: The Agile lifecycle and its impact on testing, Test driven	13Hrs
	development– Acceptance tests andverifying stories, writing a user	
	acceptance test, Developing effective test suites, Continuous integration,	
	Coderefactoring. Risk based testing, Regression tests, Test automation	
	Total	58Hrs

- 1. Ken Schawber, Mike Beedle, "Agile Software Development with Scrum", International Edition, Pearson.
- 2. Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices", First International Edition, Prentice Hall. 3. Pedro M. Santos, Marco Consolaro, and Alessandro Di Gioia, "Agile Technical Practices Distilled: A learning journey in technical practices and principles of software design", First edition, Packt Publisher.

Reference Books

- 1. Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile Teams", International edition, Addison Wesley.
- 2. Alistair Cockburn, "Agile Software Development: The Cooperative Game", 2nd Edition, Addison-Wesley

Course Code	Introduction to Quantum Computing	L	T	P	C
Course Code	Introduction to Quantum Computing	3	1	0	4

- 1. Introduce fundamental concepts of quantum mechanics and its mathematical formalism.
- 2. Explore quantum computing and communication principles and technologies.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Describe the Historical development of quantum theory and its relevance to modern computing	K2
CO2	Define Qubits and Compare the Classical vs. quantum information	K4
CO3	Explain the Classical computing review and limitations	K3
CO4	Demonstrate the principles and techniques of Quantum error correction	K4
CO5	Discuss the working, applications and potential of Quantum sensors in real-world scenarios	K3

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		M			
CO2	M		Н	Н		
CO3	M		Н	M		
CO4	Н		Н	Н	M	L
CO5	M		M	M	Н	M

UNIT	CONTENTS	Contact Hours
UNIT – 1	History of Quantum Computing: Importance of Mathematics, Physics and Biology. Introduction to Quantum Computing: Bits Vs Qubits, Classical Vs Quantum logical operations	10Hrs
UNIT – 2	Background Mathematics: Basics of Linear Algebra, Hilbert space, Probabilities and measurements. Background Physics: Paul's exclusion Principle, Superposition, Entanglement and super-symmetry, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis. Background Biology: Basic concepts of Genomics and Proteomics (Central Dogma)	12Hrs

UNIT – 3	Qubit: Physical implementations of Qubit. Qubit as a quantum unit of information. The Bloch sphere Quantum Circuits: single qubit gates, multiple qubit gates, designing the quantum circuits. Bell states.	12Hrs
UNIT – 4	Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor's factorization algorithm, Grover's search algorithm	12Hrs
UNIT – 5	Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation. Quantum Information and Cryptography: Comparison between classical and quantum information theory. Quantum Cryptography, Quantum teleportation	12Hrs
	Total	58Hrs

1. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge

- 1. Quantum Computing for Computer Scientists by Noson S. Yanofsky and Mirco A. Mannucci
- 2. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol.I: Basic Concepts, Vol II
- 3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms

G G . 1	Feature Engineering	L	T	P	C
Course Code	(Program Elective-III)	3	0	0	3

Course Objectives: The main objectives of the course are to

- 1. Expose students to tools and frameworks for feature engineering
- 2. Develop an understanding of data preprocessing technique

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)
CO1	Describe the Basic concepts of Data, Tasks, Models, Features and Model	K2
	building	
CO2	Explain the concept of converting Text into Flat Vectors using Bag- of-Words,	K3
	and Bag-of-n-Grams	
CO3	Demonstrate techniques for Dimensionality Reduction	K4
CO4	Discuss non linear Featurization	K4
CO5	Explain the concept of Item-Based Collaborative Filtering	K3

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		Н	M		
CO2	M		Н	Н		
CO3	Н		Н	Н	M	
CO4	Н		Н	Н	M	L
CO5	M		M	Н	Н	L

UNIT	CONTENTS	Conta					
		ct					
		Hours					
UNIT – 1	The Machine Learning Pipeline: Data, Tasks, Models, Features, Model	10Hrs					
	Evaluation Fancy Tricks with Simple Numbers: Scalars, Vectors, and						
	Spaces, Dealing with Counts, Binarization, Quantization or Binning, Log						
	Transformation, Log Transform in Action, Power Transforms:						
	Generalization of the Log Transform, Feature Scaling or Normalization,						
	Min-Max Scaling, Standardization (Variance Scaling), £2 Normalization,						
	Interaction Features, Feature Selection						

UNIT – 2	Text Data: Flattening, Filtering, and Chunking: Bag-of-X: Turning	12Hrs					
	NaturalText into Flat Vectors, Bag- of-Words, Bag-of-n-Grams, Filtering						
	for Cleaner Features: Stopwords, Frequency-Based Filtering, Stemming;						
	Atoms of Meaning: From Words to n-Grams to Phrases: Parsing and						
	Tokenization, Collocation Extraction for Phrase Detection The Effects of						
	Feature Scaling: From Bag-of-Words to Tf-Idf: Tf-Idf: A Simple Twist						
	on Bag-of- Words, Putting It to the Test: Creating a Classification						
	Dataset, Scaling Bag-of-Words with Tf-Idf Transformation,						
	Classification with Logistic Regression, Tuning Logistic Regression						
	withRegularization						
UNIT – 3	Categorical Variables: Counting Eggs in the Age of Robotic Chickens:	12Hrs					
	Encoding Categorical Variables: One-Hot Encoding, Dummy Coding,						
	Effect Coding, Pros and Cons of Categorical Variable Encodings;						
	Dealing with Large Categorical Variables: Feature Hashing, Bin						
	Counting. Dimensionality Reduction: Squashing the Data Pancake with						
	PCA: Intuition, Derivation: Linear Projection, Variance and Empirical						
	Variance, Principal Components: First Formulation, Principal						
	Components: Matrix-Vector Formulation, General Solution of the						
	Principal Components; Transforming Features, Implementing PCA: PCA						
	in Action, Whitening and ZCA, Considerations and Limitations of PCA						
UNIT – 4	Nonlinear Featurization via K-Means Model Stacking: k-Means	12Hrs					
	Clustering, Clustering as SurfaceTiling, k-Means Featurization for						
	Classification: Alternative Dense Featurization, Pros, Cons, and Gotchas						
UNIT – 5	Item-Based Collaborative Filtering, First Pass: Data Import, Cleaning,	12Hrs					
	and Feature Parsing, Academic PaperRecommender: Naïve						
	Approach,SecondPass:MoreEngineeringandaSmarterModel,Academic						
	Paper Recommender: Take 2, Third Pass: More Features is More						
	Information, Academic Paper Recommender: Take 3						
	Total	58Hrs					

- 1. "Feature EngineeringforMachineLearningPrinciples and Techniquesfor Data Scientists", Alice Zheng& Amanda Casari, O'REILLY, 2018
- 2. "Feature Engineering and Selection: APractical Approach for Predictive Models", Max Kuhn, Kjell Johnson, CRC Press, 2019

C C- 1-	Generative AI	L	T	P	C
Course Code	(Program Elective-III)	3	0	0	3

Course Objectives:

- 1. To learn Python and TensorFlow skills for Generative AI.
- 2. To study techniques for cleaning and preparing data for Generative AI tasks.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Implement Python and TensorFlow basics, including data handling and preprocessing techniques	K5
CO2	Implement Generative AI models such as GANs, VAEs, LSTM networks, and Transformer models for image text, and music generation tasks	K4
CO3	Evaluate model performance and experiment with hyper parameters and optimization techniques to enhance Generative AI outcomes.	K6
CO4	Develop innovative applications in image, text, and music generation, showcasing practical skills	K5
CO5	Leverage modern programming tools and frameworks	K4

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		M	Н	M	
CO2	Н		Н	Н	Н	L
CO3	Н		Н	Н	Н	M
CO4	Н	M	Н	Н	Н	Н
CO5	Н	M	Н	Н	Н	Н

UNIT	CONTENTS	Contact					
		Hours					
UNIT – 1	Introduction To Gen Ai: Historical Overview of Generative modelling,	10Hrs					
	Difference between Gen AI and Discriminative Modeling, Importance of						
	generative models in AI and Machine Learning, Types of Generative models,						
	GANs, VAEs, autoregressive models and Vector quantized Diffusion models,						
	Understanding if probabilistic modeling and generative process, Challenges						
	of Generative Modeling, Future of Gen AI, Ethical Aspects of AI,						
	Responsible AI, Use Cases						
UNIT – 2	Generative Models For Text: Language Models Basics, Building blocks of	12Hrs					
	Language models, Transformer Architecture, Encoder and Decoder, Attention						
	mechanisms, Generation of Text, Models like BERT and GPT models,						
	Generation of Text, Autoencoding, Regression Models, Exploring ChatGPT,						

	Prompt Engineering: Designing Prompts, Revising Prompts using						
	Reinforcement Learning from Human Feedback (RLHF), Retrieval						
	Augmented Generation, Multimodal LLM, Issues of LLM like hallucination						
UNIT – 3	Generation of Images: Introduction to Generative Adversarial Networks,	12Hrs					
	Adversarial Training Process, Nash Equilibrium, Variational Autoencoders,						
	Encoder-Decoder Architectures, Stable Diffusion Models, Introduction to						
	Transformer-based Image Generation, CLIP, Visual Transformers ViT- Dall-						
	E2 and Dall-E3, GPT-4V, Issues of Image Generation models like Mode						
	Collapse and Stability.						
UNIT – 4	Generation of Painting, Music, and Play: Variants of GAN, Types of						
	GAN, Cyclic GAN, Using Cyclic GAN to Generate Paintings, Neural Style						
	Transfer, Style Transfer, Music Generating RNN, MuseGAN, Autonomous						
	agents, Deep Q Algorithm, Actor-critic Network.						
UNIT – 5	Open Source Models And Programming Frameworks: Training and Fine	12Hrs					
	tuning of Generative models, GPT 4 All, Transfer learning and Pretrained						
	models, Training vision models, Google Copilot, Programming LLM,						
	LangChain, Open Source Models, Llama, Programming for TimeSformer,						
	Deployment, Hugging Face.						
	Total	58Hrs					

1. Denis Rothman, "Transformers for Natural Language Processing and Computer Vision", Third Edition, Packt Books, 2024

- 1. David Foster, "Generative Deep Learning", O'Reily Books, 2024.
- 2. Altaf Rehmani, "Generative AI for Everyone", BlueRose One, 2024.

Course Code	CyberSecurity	L	T	P	C
	(ProfessionalElective–IV)	3	0	0	3

Course Objectives: This course is aimed at enabling the students to

- .1. Familiarize students with cyber attack types
- 2. Develop an understanding of network security principles

Course Outcomes: At the end of the course, student will be able to

	CourseOutcomes	Knowledge
		Level (K)#
CO1	Understandkeytermsand concepts in cyber securityfundamentals.	K2
CO2	Gainknowledgeaboutattackertechniquesandmotivations.	K3
CO3	Differentiatevariousgoverningbodiesofcyber laws.	K2
CO4	Understandprinciplesof maliciouscode.	K2
CO5	ObtaincomprehensiveknowledgeonDefense andAnalysisTechniques.	K4

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			Н	Н		
CO2			Н	Н		
CO3	M		Н	Н		M
CO4			M	M		
CO5			M	M	M	M

UNIT	CONTENTS	Contact
		Hours
UNIT-1	Cyber Security Fundamentals: Information Assurance	12 Hrs
	Fundamentals, Basic Cryptography, Symmetric Encryption,	
	Public Key Encryption, The Domain Name System (DNS),	
	Microsoft Windows Security Principles: Windows Tokens,	
	Window Messaging, Windows Program Execution	
UNIT-2	Introduction to cyber-attacks, application security (design,	12 Hrs
	development and testing), operations security, monitoring,	
	identifying threats and remediating them, Principles of data	
	security - Confidentiality, Integrity and Availability, Data	

	Privacy, Data breaches, preventing attacks and breaches with	
	security controls, Compliance standards, Computer Ethics.	
UNIT-3	Cyber Security Management Security Planning - Business	12 Hrs
	Continuity Planning - Handling Incidents - Risk Analysis -	
	Dealing With Disaster -Legal Issues - Protecting programs	
	and Data.	
	Introduction to Cyber Law: Cyber Law, Need for Cyber	
	Law Jurisprudence of Indian Cyber, Law, Evolution of Cyber	
	Crime	
UNIT-4	Malicious Code: Self-Replicating Malicious Code, Evading	12 Hrs
	Detection and Elevating Privileges, Stealing Information and	
	Exploitation, Research ideas in Cyber Security.	
UNIT-5	Defense and Analysis Techniques: Memory Forensics,	10 Hrs
	Honeypots, Malicious Code Naming, Automated Malicious	
	Code Analysis Systems, Cyber Security current trends and	
	standards.	
	Total	58 Hrs

- **1.** James Graham, Richard Howard, Ryan Olson "CYBER SECURITY ESSENTIALS", CRC Press, Taylor & Francis Group, LLC, 2011.
- **2.** Sammons, John, and Michael Cross. The basics of cybers a fety: computer and mobile device safety made easy. Elsevier, 2016.

	Natural Language Processing	L	T	P	C
Course Code	(Professional Elective – III)	3	1	0	4

Course Objectives: The main objective of the course is to

- 1. Explore statistical and machine learning approaches for NLP tasks, including language modeling, classification, and sequence labeling.
- 2. Provide knowledge of advanced NLP techniques, such as word embeddings, transformer models, attention mechanisms, and contextual representations.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Demonstrate a given text with basic Language features	K5
CO2	Design an innovative application using NLP components	К3
CO3	Explain a rule based system to tackle morphology/syntax of a language	К3
CO4	Design a tag set to be used for statistical processing for real-time applications	K3
CO5	Compare and contrast the use of different statistical approaches for different types of NLP applications	K5

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		M	Н		
CO2	Н	M	Н	Н	Н	Н
CO3	M		Н	Н		
CO4	M		Н	Н	M	
CO5	M	M	Н	Н	Н	M

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	INTRODUCTION: Origins and challenges of NLP – Language Modeling:	10Hrs
	Grammar-based LM, Statistical LM - Regular Expressions, Finite-State	
	Automata – English Morphology, Transducers for lexicon and rules,	
	Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit	
	Distance	

UNIT – 2	WORD LEVEL ANALYSIS: Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part- of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models	12Hrs
UNIT – 3	SYNTACTIC ANALYSIS: Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures, Unification of feature structures	12Hrs
UNIT – 4	SEMANTICS AND PRAGMATICS: Requirements for representation, First-Order Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods.	12Hrs
UNIT – 5	DISCOURSE ANALYSIS AND LEXICAL RESOURCES: Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm – Coreference Resolution – Resources: Porter Stemmer, Lemmatizer, Penn Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC	12Hrs
	Total	58Hrs

- 1. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, 2ndEdition, Daniel Jurafsky, James H. Martin Pearson Publication, 2014.
- 2. Natural Language Processing with Python, First Edition, Steven Bird, Ewan Klein and Edward Loper, OReilly Media, 2009.

- 1. Language Processing with Java and Ling Pipe Cookbook, 1stEdition, Breck Baldwin, Atlantic Publisher, 2015.
- 2. Natural Language Processing with Java, 2ndEdition, Richard M Reese, OReilly Media, 2015.
- 3. Handbook of Natural Language Processing, Second, Nitin Indurkhya and Fred J. Damerau, Chapman and Hall/CRC Press, 2010.Edition
 Natural Language Processing and Information Retrieval, 3rdEdition, Tanveer Siddiqui, U.S. Tiwary, Oxford University Press, 2008.

C C 1	Block Chain Technologies	L	T	P	C
Course Code	(Program Elective-IV)	3	0	0	3

Course Objectives:

- 1. Architect sensor networks for various application setups.
- 2. Devise appropriate data dissemination protocols and model links cost.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Discuss the Cryptographic primitives used in Blockchain	K2
CO2	Discuss about various technologies borrowed in blockchain	K2
CO3	Illustrate various models for blockchain	K2
CO4	Discuss about Ethereum	K2
CO5	Discuss about Hyperledger Fabric	K2

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	L		M	H	M	M
CO2	L		M	M	Н	M
CO3			M	M	M	
CO4			M	M	Н	M
CO5			M	M	H	M

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	INTRODUCTION TO BLOCKCHAIN: Introduction, history of Bitcoin and	10Hrs
	origins of Blockchain, Fundamentals of Blockchain and key components	
	(Chapter 1-book1), Permission and Permission-less platforms(Chapter 1-	
	book2), Introduction to Cryptography, SHA256 and ECDSA, Hashing and	
	Encryption, Symmetric/ Asymmetric keys, Private and Public Keys(Chapter	
	3-book2).	
UNIT – 2	TECHNOLOGIESBORROWEDINBLOCKCHAIN: TechnologiesBorrowed	12Hrs
	inBlockchain-hashpointers—DigitalcashetcBitcoinblockchain-Wallet-Blocks	
	Merkley Tree - hardness of mining - Transaction verifiability - Anonymity -	

	forks - Double spending - Mathematical analysis of properties of Bitcoin - Bitcoin-thechallengesandsolutions. (Chapter 3-book2).	
UNIT – 3	CONSENSUS MECHANISMS :ConsensusAlgorithms: ProofofWork(PoW)asrandomoracle-Formaltreatmentofconsistency- LivenessandFairness-ProofofStake(PoS)based Chains -Hybrid models (PoW + PoS), ByzantineModelsoffaulttolerance. ((Chapter 1-book2))	12Hrs
UNIT – 4	ETHEREUM: Ethereum-Ethereum Virtual Machine (EVM)-Wallets for Ethereum-Solidity-Smart Contracts (Chapter 5-book1),-The Turing Completeness of Smart Contract Languages and verification challenges-Using smart contracts to enforce legal contracts-Comparing Bitcoin scripting vs. Ethereum Smart Contracts-Some attacks on smart contracts (Chapter 6 and Chapter 7-book2)	12Hrs
UNIT – 5	HYPERLEDGERFABRIC: Hyperledgerfabric- the plug and play platform and mechanisms in permissioned blockchain - Beyond Cryptocurrency – applications of blockchain in cyber security- integrity of information- E-Governance and othercontractenforcementmechanisms-Limitationsofblockchainasatechnologyandmythsvsrealityofblockchaintechnology (Chapter 16-book1), (Chapter 9 -book2)	12Hrs
	Total	58Hrs

- 1. Blockchain Technology Chandramouli Subramanian, Asha A George, Abhilash K A and Meena Karthikeyan, University Press, 2020.
- 2. Mastering Blockchain Distributed ledger technology, decentralization, and smart contracts explained, Imran Bashir,2nd ed. Edition,2018, paket publication

Reference Books:

- 1. Shukla, M.Dhawan, S.Sharma, S.Venkatesan "Blockchain Technology: Cryptocurrenc yand Applications", Oxford University Press 2019.
- 2. Cryptography and network security principles and practice, William Stallings, Pearson, 8th edition.

WEBREFERENCES:

- 1. https://drive.google.com/file/d/1PtYaDmWYaqPVGjKDnMYGWO5eoI5wMPtJ/view
- 2. https://archive.nptel.ac.in/courses/106/104/106104220/
- 3. https://www.tutorialspoint.com/blockchain/index.htm

0 0 1	DevOps	L	T	P	C
Course Code	(Program Elective-IV)	3	0	0	3

Course Objectives: The main objectives of this course are to:

- 1. Describe the agile relationship between development and IT operations.
- 2. Understand the skill sets and high-functioning teams involved in DevOps and related methods to reach a continuous delivery capability.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Explain DevOps Life cycle process	K2
CO2	Demonstrate the concept of Code coverage	K3
CO3	Explain Jenkins , jenkins workflow, jenkins master slave architecture, Jenkins Pipelines	K2
CO4	Discuss the concept of Dockers Command and running containers	K2
CO5	Analyze and troubleshoot configuration and deploymentissues in automated environments.	K4

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	L		M	M	Н	
CO2			M	Н	Н	
CO3			M	Н	Н	
CO4			M	M	Н	
CO5	CO4			M	M	Н

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	Introduction to DevOps: Introduction to SDLC, Agile Model. Introduction	10Hrs
	to DevOps. DevOps Features, DevOps Architecture, DevOps Lifecycle,	
	Understanding Workflow and principles, Introduction to DevOps tools, Build	

	Automation, Delivery Automation, Understanding Code Quality, Automation of CI/ CD. Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples	1011
UNIT – 2	Source Code Management (GIT): The need for source code control, The history of source code management, Roles and code, source code management system and migrations. What is Version Control and GIT, GIT Installation, GIT features, GIT workflow, working with remote repository, GIT commands, GIT branching, GIT staging and collaboration. UNIT TESTING-CODECOVERAGE: Junit ,nUnit& Code Coverage with Sonar Qube, SonarQube - Code Quality Analysis.	12Hrs
UNIT – 3	Build Automation - Continuous Integration (CI): Build Automation, What is CI Why Cl is Required, CI tools, Introduction to Jenkins (With Architecture), jenkins workflow, jenkins master slave architecture, Jenkins Pipelines, PIPELINE BASICS - Jenkins Master, Node, Agent, and Executor Freestyle Projects Pipelines, Jenkins for Continuous Integration, Create and Manage Builds, User Management in Jenkins Schedule Builds, Launch Builds on Slave Nodes.	12Hrs
UNIT – 4	Continuous Delivery: Importance of Continuous Delivery, CONTINUOUS DEPLOYMENT CD Flow, Containerization with Docker: Introduction to Docker, Docker installation, Docker commands, Images & Containers, Docker File, running containers, working with containers and publish to Docker Hub. Testing Tools: Introduction to Selenium and its features, Java Script testing	12Hrs
UNIT – 5	Configuration Management - ANSIBLE: Introduction to Ansible, Ansible tasks Roles, Jinja2 templating, Vaults, Deployments using Ansible. CONTAINERIZATION USING UBERNETES(OPENSHIFT): Introduction to Kubernetes Namespace & Resources, CI/CD - On OCP, BC, DC& Config Maps, Deploying Apps on Open shift Container Pods. Introduction to Puppet master and Chef	12Hrs
	Total	58Hrs

- 1. Joyner, Joseph., DevOps for Beginners: DevOps Software Development Method Guide for Software Developers and It Professionals, 1st Edition MihailsKonoplows, 2015.
- 2. Alisson Machado de Menezes., Hands-on DevOps with Linux,1st Edition, BPB Publications, India, 2021.

Reference Books

1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley; ISBN-10

- 2. Gene Kim Je Humble, Patrick Debois, John Willis. The DevOps Handbook, 1st Edition, IT Revolution Press, 2016.
- 3. Verona ,Joakim Practical DevOps,1stEdition,Packt Publishing,2016.
- 4. Joakim Verona. Practical Devops, Second Edition.In gram short title; 2nd edition (2018). ISBN10: 1788392574
- 5. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's View point. Wiley publications. ISBN:9788126579952

Web Resources:

- 1. https://archive.nptel.ac.in/courses/106/104/106104220/
- 2. https://www.tutorialspoint.com/blockchain/index.htm

Course Code	Internet of Things (Professional	L	T	P	C
Course Code	Elective – IV)	3	0	0	3

CourseObjectives:This course is aimed at enabling the students to

- 1. TounderstandaboutthefundamentalsofInternetofThingsanditsbuildingblocksal ong with their characteristics
- 2. Tounderstandthe recentapplicationdomains of IoTineverydaylife

CourseOutcomes:At the end of the course, student will be able to

	CourseOutcomes	Knowledge
		Level (K)
CO1	UnderstandCharacteristicsandDesignof InternetofThings(IoT).	K2
CO2	ComparevariousM2Mand IoT architectures.	K4
CO3	Studyvarious Cloud StorageModels forIoT.	K2
CO4	DesignIoTSystemusing Python.	K5
CO5	Applyvarious Data Analyticstools forIoT.	К3

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			Н	Н		
CO2			Н	Н		
CO3	M		Н	Н		M
CO4			M	M		
CO5			M	M	M	M

UNIT	CONTENTS	Conta
		ct
		Hours
UNIT-1	Introduction: Internet of Things, Definition & Characteristics of IoT,	12 Hrs
	Physical Design of IoTLogical Design of IoT, IoT Enabling	
	Technologies, IoT Levels & Deployment Templates. Domain Specific	
	IoTs: Home, Cities, Environment, Energy systems, Logistics,	
	Agriculture, Health &Lifestyle.	
UNIT-2	IoT & M2M: Introduction, M2M, Difference between IoT and M2M,	12 Hrs
	SDN and NFV for IoT, Need for IoT Systems Management, Simple	
	Network Management Protocol (SNMP), Limitations of SNMP,	

	Network Operator Requirements, NETCONF, YANG, IoT Systems,	
	Management with NETCONF-YANG, NETOPEER.	
UNIT-3	IoT Platforms Design Methodology IoT Design Methodology, Case	12 Hrs
	Study on IoT System for Weather Monitoring, Motivation for Using	
	Python, IoT Systems - Logical Design using Python, Installing Python	
	, Python Data Types & Data Structures ,Control Flow , Functions,	
	Modules, Packages, File Handling, Date/Time Operations, Classes	
	,Python Packages of Interest for IoT.	
UNIT-4	IoTPhysicalDevices&Endpoints,RaspberryPi,AbouttheBoard,LinuxonRaspberryPi	12 Hrs
	,RaspberryPiInterfaces,	
	ProgrammingRaspberryPiwithPython,OtherIoTDevices.	
	PhysicalServers&CloudOfferings,IntroductiontoCloudStorageModels&CommunicationAPIs	
	,WAMP - AutoBahn for IoT , Xively Cloud for IoT , Python Web	
	Application Framework- Django, Amazon Web Services for IOT	
UNIT-5	Data Analytics for IoT, Introduction, Apache Hadoop, Using Hadoop	10 Hrs
	MapReduce for Batch Data Analysis, Apache Oozie, Apache Spark,	
	Apache Storm, Using Apache Storm for Realtime Data Analysis.	
	Total	58 Hrs

- 1. A.BahgyaandV.Madisetti,"InternetofThings",UnivesityPress,2015.
- 2. RajKamal"InternetofThings", MGH,2015.

- 1. K.A.LambertandB.L.Juneja"Fundamentalsof Python",,CengageLearning,2012.
- 2. Rajkumar BuyaaandAmirVDastjerdi, Internetofthings:PrinciplesandParadigms,MorganKaufmann.
- 3. OlivierHersent, DavidBoswarthick and Omar Elloumi, The Internet of Things: Keyapplicat ions and Protocols, Wiley

G G 1	Design Patterns	L	T	P	C
Course Code	(Program Elective-IV)	3	0	0	3

Course Objectives: This course is aimed at enabling the students to

- 1. Demonstration of patterns related to object oriented design.
- 2. Describe the design patterns that are common in software applications.

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)
CO1	Construct a design consisting of a collection of modules	K6
CO2	Exploit well-known design patterns (such as Iterator, Observer, Factory and Visitor). Analyze	K4
CO3	Distinguish between different categories of design patterns. Analyze	K4
CO4	Ability to understand and apply common design patterns to incremental/iterative development.	К3
CO5	identify appropriate patterns for design of given problem	K3

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		Н	Н	M	
CO2	M		Н	Н	M	
CO3			Н	Н		
CO4			M	Н	M	
CO5			Н	Н	M	

UNIT	CONTENTS	Contact
		Hours
UNIT – 1	What is a Design Pattern, Design Patterns in Smalltalk MVC, Describing	10Hrs
	Design Patterns, The Catalogue of Design Patterns, Organizing The Cato log,	
	How Design Patterns solve Design Problems, How to Select a Design pattern,	
	How to Use a Design Pattern.	

UNIT – 2	A Case Study: Designing a Document Editor, Design Problems, Document Structure, Formatting, Embellishing the User Interface, Supporting Multiple Look-and-Feel Standards, Supporting Multiple Window Systems, User Operations Spelling Checking and Hyphenation, Summary, Creational Patterns, Abstract Factory, Builder, Factory Method, Prototype, Singleton, Discussion of Creational Patterns.	12Hrs
UNIT – 3	Structural Pattern Part-I, Adapter, Bridge, Composite. Structural Pattern Part-	12Hrs
	II, Decorator, Facade, Flyweight, Proxy.	
UNIT – 4	Behavioral Patterns Part: I, Chain of Responsibility, Command, Interpreter,	12Hrs
	Iterator. Behavioral Patterns Part: II, Mediator, Memento, Observer,	
	Discussion of Behavioral Patterns.	
UNIT – 5	Behavioral Patterns Part: III, State, Strategy, Template Method, Visitor,	12Hrs
	Discussion of Behavioral Patterns. What to Expect from Design Patterns, A	
	Brief History, The Pattern Community, An Invitation, A Parting Thought.	
	Total	58Hrs

1. Design Patterns By Erich Gamma, Pearson Education

- 1. Patterns in JAVA Vol-I (or) Vol-II By Mark Grand, Wiley Dream Tech.
- 2. Java Enterprise Design Patterns Vol-III By Mark Grand Wiley Dream Tech

Course Code	Advanced Data Mining Lab	L	T	P	C
Course Code		0	1	2	2

COURSE OBJECTIVES: The main objective of the course is to

- 1. Inculcate Conceptual, Logical, and Physical design of Data Warehouses OLAP applications and OLAP deployment
- 2. Design a data warehouse or data mart to present information needed by management in a form that is usable

Course Outcomes: At the end of the course, student will be able to

		Knowledge
		Level (K)
CO1	Preprocess and analyze complex datasets for mining meaningful patterns using advanced techniques.	K6
CO2	Implement advanced data mining algorithms, including association rule mining, sequential pattern mining, and outlier detection.	K4
CO3	Use modern data mining tools and frameworks (e.g., Python, R, Weka, or Spark MLlib) for practical implementations.	K4
CO4	Evaluate and compare model performance using relevant metrics, and optimize models for accuracy and efficiency.	К3
CO5	Apply data mining techniques to domain-specific applications, such as business intelligence, bioinformatics, and social network analysis.	K3

		• •				
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		Н	Н	M	
CO2	M		Н	Н	M	
CO3			Н	Н		
CO4			M	Н	M	
CO5			Н	Н	M	

UNIT	CONTENTS	Contact Hours
Experiment– 1	Creation of a Data Warehouse. > Build Data Warehouse/Data Mart (using open source tools like	3Hrs
	Pentaho Data Integration Tool, Pentaho Business Analytics; or other data warehouse tools like Microsoft-SSIS, Informatica,	
	Business Objects, etc.,)	
	➤ Design multi-dimensional data models namely Star, Snowflake and Fact Constellation schemas for any one enterprise (ex.	
	Banking, Insurance, Finance, Healthcare, manufacturing,	
	Automobiles, sales etc).	
	 Write ETL scripts and implement using data warehouse tools. Perform Various OLAP operations such slice, dice, roll up, drill 	
	up and pivot	
Experiment- 2	Explore machine learning tool "WEKA"	3Hrs
	Explore WEKA Data Mining/Machine Learning Toolkit.	
	 Downloading and/or installation of WEKA data mining toolkit. Understand the features of WEKA toolkit such as Explorer, 	
	Knowledge Flow interface, Experimenter, command-line	
	interface.	
	Navigate the options available in the WEKA (ex. Select attributes	
	panel, Preprocess panel, Classify panel, Cluster panel, Associate panel and Visualize panel)	
	> Study the arff file format Explore the available data sets in	
	WEKA. Load a data set (ex. Weather dataset, Iris dataset, etc.)	
	Load each dataset and observe the following:	
	 List the attribute names and they types Number of records in each dataset 	
	3. Identify the class attribute (if any)	
	4. Plot Histogram	
	5. Determine the number of records for each class.	
T	6. Visualize the data in various dimensions	211
Experiment- 3	Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets	3Hrs
	Explore various options available in Weka for preprocessing data	
	and apply	
	Unsupervised filters like Discretization, Resample filter, etc. on	
	each dataset Load weather. nominal, Iris, Glass datasets into Weka and run	
	Apriori	
	Algorithm with different support and confidence values.	
	> Study the rules generated. Apply different discretization filters on	
	numerical attributes and run the Apriori association rule algorithm. Study the rules generated.	
	 Derive interesting insights and observe the effect of discretization 	
	in the rule generation process.	

Experiment- 4	 Demonstrate performing classification on data sets Weka/R Load each dataset and run 1d3, J48 classification algorithm. Study the classifier output. Compute entropy values, Kappa statistic. Extract if-then rules from the decision tree generated by the classifier, Observe the confusion matrix. Load each dataset into Weka/R and perform Naïve-bayes classification and k-Nearest Neighbour classification. Interpret the results obtained. Plot RoC Curves Compare classification results of ID3, J48, Naïve-Bayes and k-NN classifiers for each dataset, and deduce which classifier is performing best and poor for each dataset and justify. 	3Hrs
Experiment- 5	 Demonstrate performing clustering of data sets ➤ Load each dataset into Weka/R and run simple k-means clustering algorithm with different values of k (number of desired clusters). ➤ Study the clusters formed. Observe the sum of squared errors and centroids, and derive insights. ➤ Explore other clustering techniques available in Weka/R. Explore visualization features of Weka/R to visualize the clusters. Derive interesting insights and explain 	3Hrs
Experiment- 6	Demonstrate knowledge flow application on data sets into Weka/R ➤ Develop a knowledge flow layout for finding strong association rules by using Apriori, FP Growth algorithms ➤ Set up the knowledge flow to load an ARFF (batch mode) and perform a cross validation using J48 algorithm Demonstrate plotting multiple ROC curves in the same plot window by using j48 and Random forest tree	3Hrs
Experiment- 7	Demonstrate ZeroR technique on Iris dataset (by using necessary preprocessing technique(s)) and share your observations	3Hrs
Experiment- 8	Write a java program to prepare a simulated data set with unique instances	3Hrs
Experiment- 9	Write a Python program to generate frequent item sets / association rules using Apriori algorithm	3Hrs
Experiment– 10	Write a program to calculate chi-square value using Python/R. Report your observation.	3Hrs
Experiment- 11	Implement a Java/R program to perform Apriori algorithm	3Hrs
Experiment– 12	Write a R program to cluster your choice of data using simple k-means algorithm using JDK	3Hrs
Experiment- 13	Write a program of cluster analysis using simple k-means algorithm Python/R programming language	3Hrs

Experiment- 14	Write a program to compute/display dissimilarity matrix (for your own	3Hrs
	dataset containing at least four instances with two attributes) using	
	Python	
Experiment- 15	Visualize the datasets using matplotlib in python/R.(Histogram, Box plot,	3Hrs
	Bar chart, Pie chart etc.,)	
	Total	45Hrs

Course Code	Quantum Computer lab	L	T	P	C
Course Code	•	0	1	2	2

COURSE OBJECTIVES: The main objective of the course is to

- 1. To introduce the historical background and interdisciplinary foundations of Quantum Computing.
- 2. To provide a strong foundation in linear algebra, probability, and quantum physics required for quantum computing

Course Outcomes: At the end of the course, student will be able to

		Knowledge Level (K)		
CO1	Differentiate between classical and quantum computation paradigms			
CO2	Apply mathematical and physical principles to analyze quantum systems	K3		
CO3	Design and simulate quantum circuits using quantum programming frameworks	K5		
CO4	Implement basic quantum algorithms (Deutsch, Grover, Shor, etc.) and evaluate their performance	K3		
CO5	Demonstrate understanding of quantum error correction and quantum cryptographic protocols	K3		

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	M		Н	Н	M	
CO2	M		Н	Н	M	
CO3			Н	Н		
CO4			M	Н	M	
CO5			Н	Н	M	

UNIT	CONTENTS		
		Hours	
Experiment-1	Classical vs Quantum Bits Simulation		
	• Implement a basic program to show difference between bit and qubit (superposition of states).		

Experiment- 2	Single Qubit Gates	3Hrs
	Implement and visualize operations of Pauli-X, Y, Z, Hadamard,	
	Phase gates on Bloch Sphere	277
Experiment- 3	Multiple Qubit Gates	3Hrs
	Design and execute a CNOT gate and show how entanglement arises	
Experiment- 4	Superposition & Measurement	4Hrs
	 Apply Hadamard to 0>, measure in both computational and Hadamard basis. 	
Experiment- 5	Bell State Preparation & Verification	3Hrs
	• Generate Bell states using Hadamard + CNOT and verify entanglement.	
Experiment- 6	Deutsch Algorithm Implementation Implement and test Deutsch's Algorithm for constant and balanced functions	4Hrs
Experiment- 7	Deutsch-Jozsa Algorithm	4Hrs
	Demonstrate exponential speed-up over classical algorithms	
Experiment-8	Grover's Algorithm	3Hrs
	• Implement Grover's search for finding a marked element in an unsorted dataset.	
Experiment- 9	Shor's Algorithm (Simulation)	4Hrs
•	• Demonstrate factoring small numbers (e.g., 15) on a quantum simulator.	
Experiment- 10	Quantum Cryptography & Teleportation	4Hrs
	 Simulate BB84 protocol and quantum teleportation using entangled qubits. 	
	Total	45Hrs